De-correlating expression in gene-set analysis
نویسندگان
چکیده
منابع مشابه
De-correlating expression in gene-set analysis
MOTIVATION Group-wise pattern analysis of genes, known as gene-set analysis (GSA), addresses the differential expression pattern of biologically pre-defined gene sets. GSA exhibits high statistical power and has revealed many novel biological processes associated with specific phenotypes. In most cases, however, GSA relies on the invalid assumption that the members of each gene set are sampled ...
متن کاملCorrelating gene promoters and expression in gene disruption experiments
MOTIVATION Finding putative transcription factor binding sites in the upstream sequences of similarly expressed genes has recently become a subject of intensive studies. In this paper we investigate how much gene expression regulation can be attributed to the presence of various binding sites in the gene promoters by correlating the binding sites and the changes in gene expression resulting fro...
متن کاملGene-set approach for expression pattern analysis
Recently developed gene set analysis methods evaluate differential expression patterns of gene groups instead of those of individual genes. This approach especially targets gene groups whose constituents show subtle but coordinated expression changes, which might not be detected by the usual individual gene analysis. The approach has been quite successful in deriving new information from expres...
متن کاملQuantitative set analysis for gene expression: a method to quantify gene set differential expression including gene-gene correlations
Enrichment analysis of gene sets is a popular approach that provides a functional interpretation of genome-wide expression data. Existing tests are affected by inter-gene correlations, resulting in a high Type I error. The most widely used test, Gene Set Enrichment Analysis, relies on computationally intensive permutations of sample labels to generate a null distribution that preserves gene-gen...
متن کاملTime-Course Gene Set Analysis for Longitudinal Gene Expression Data
Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2010
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btq380